Jijamata Mahavidyalaya, Buldana Department of Chemistry

CO and PO

PROGRAMME SPECIFIC OUTCOMES

Programme outcome after successful completion of B.Sc. with Chemistry students should able to programme specific outcomes

- PSO1: Gain the knowledge of chemistry through theory and practical.
- PSO2:- To explain nomenclature stereochemistry, structure, reactivity and mechanism of chemical reaction.
- PSO3:- Identify chemical formula and solve numerical problems.
- PSO4: Use modern chemical tools models charts and equipments.
- PSO5:-Know structure activity relationship.
- PSO6:- Understand good laboratory practice and safety.
- PSO7:- Develop research oriented skills.
- PSO8:-Make aware and handle the sophisticated equipments.

SEMISTER-I INORGANIC CHEMISTRY

COURSE OUTCOMES

- CO1:- Get the knowledge of periodic classification of elements.
- CO2:- Understand periodic properties.
- CO3:- Know the periodic classification in S -Block, Block.
- CO4:- Discuss the different physical and chemical properties.

SEMISTER-I ORGANIC CHEMISTRY

- CO1:- Get the knowledge of inductive effect, electrometric effect, resonance and hyper conjugation.
- CO2:- Acquaint about reactive intermediate.
- CO3:- To study aliphatic hydrocarbon and their properties.

CO4:- Information about aromatic hydrocarbon.

SEMISTER-I PHYSICAL CHEMISTRY

- CO1:- To get knowledge of thermodynamics.
- CO2:- Solve numerical problems on thermodynamics.
- CO3:- To understand gaseous state.
- CO4:- To understand phase rule and different system.

SEMISTER-I ORGANIC PRACTICAL

- CO1:- To develop skill regarding different methods of organic preparation.
- CO2:- To develop new concept of green synthesis.
- CO3:- To develop skill of organic preparation.

SEMISTER-I INORGANIC QUALITATIVE ANALYSIS

- CO1:- Identify acidic and basic radical from mixture.
- CO2:- To develop skill of inorganic separation.
- CO3:- To develop idea about semi microanalysis.

SEMISTER-II INORGANIC CHEMISTRY

COURSE OUTCOMES

- CO1:- To understand the concept of polarization, covalent bonding acid and bases.
- CO2:- To get the knowledge of P- block and Nobel gas element.
- CO3:- To understand concept of hybridization type of hybridization, geometry.
- CO4:- Know information regarding gravimetric analysis.

SEMISTER-II ORGANIC CHEMISTRY

- CO1:- To get knowledge of alkyl halide, aryl halides preparation properties uses.
- CO2:- To develop method of preparation of phenol, ethers and epoxides
- CO3:- To get new method of synthesis.

SEMISTER-II PHYSICAL CHEMISTRY

CO1:- To understand chemical kinetics order, molecularity and psudounimolecular reaction.

- CO2:- To understand first, second order reaction their characteristics examples.
- CO3:- To study electrical properties for polar and non polar molecule.
- CO4:- To know magnetic properties paramagnetic, diamagnetic, and ferromagnetic and antiferromagnetic.
- CO5:- To measure magnetic susceptibility.

SEMISTER-II ORGANIC CHEMISTRY PRACTICAL

- CO1:- Analysis of organic compound and to study different parameter like MP, Element detection, functional group, derivative preparation.
- CO2:- Analysis of glucose α -naphthol, β -naphthol, toludine, anthracine, benzoic acid and salicylic acid.

SEMISTER-II PHYSICAL CHEMISTRY PRACTICAL

- CO1:- To measure surface tension, viscosity, parchore value and cleaning power of detergent.
- CO2:- To determine activation energy of reaction between K₂S₂O₈ and KI.

SEMISTER III INORGANIC CHEMISTRY

COURSE OUTCOMES

- CO1:- To understand the concept of covalent bonding, metallic bonding.
- CO2:- To get the knowledge of VSEPR Theory.
- CO3:- Know frees electron theory, valence bond theory and molecular orbital theory.
- CO4:- To understand concept of volumetric analysis.
- CO5:- Know information regarding gravimetric analysis.

SEMISTER III ORGANIC CHEMISTRY

- CO1:- To get the information of different aldehyde and carboxylic acid.
- CO2:- Understand the terms optical isomerism and conformational isomerism.
- CO3:- To know meaning of resolution enantiomer, disteriomer R and S configuration.
- CO4:- To understand the terms Newman's projection formula, sawhorse's projection formula.

SEMISTER III PHYSICAL CHEMISTRY

CO1:- To get the knowledge of thermodynamic and equilibrium.

- CO2:- To solve the numerical problem on thermodynamics.
- CO3:- To understand the concept of liquid state surface tension, viscosity.
- CO4:- To Understand measurement application of surface tension and viscosity.
- CO5:- To understand principal of redox titration.
- CO6:- To Inculcate importance of water measurement of different parameters.
- CO7:- Importance of different analysis.
- CO8:- To develop skill based aptitude among the students.

SEMISTER III INORGANIC CHEMISTRY PRACTICAL

- CO1:- To develop concept among the students for preparation of different solutions.
- CO2:- To perform redox titration, idiometric and iodometric titration.

SEMISTER III PHYSICAL CHEMISTRY PRACTICAL

- CO1:- To determine skill of construction of phase diagram.
- CO2:- To develop laboratory skill for study order of reaction.

SEMISTER IV INORGANIC CHEMISTRY

COURSE OUTCOMES

- COURSE OUTCOMES: After completion of these course students able to
- CO1:- Knowledge about third transition series elements.
- CO2:- To develop skill among the students for extraction of elements.
- CO3:- To get the knowledge of metallurgy.
- CO4:- To understand inner transition elements.

SEMISTER IV ORGANIC CHEMISTRY

- CO1:-Information regarding polynuclear hydrocarbon
- CO2;- To understand the chemistry of reactive methelene group
- CO3:- To include importance of carbohydrate.
- CO4:- To acquire importance of amino acid, diazonium salts and proteins.

SEMISTER IV PHYSICAL CHEMISTRY

- CO1:- To know the importance of colligative properties.
- CO2:- To solve numerical problems.
- CO3:- To understand crystalline state by using different models and videos.
- CO4:- To solve numerical problem on crystallography.

SEMISTER IV INORGANIC CHEMISTRY PRACTICAL

- CO1:- To know various parameters of water like hardness of water and estimation.
- CO2:- Estimation of KMnO₄ colorimetrical and also copper.

SEMISTER IV PHYSICAL CHEMISTRY PRACTICAL

- CO1:- To develop skill regarding separation of caffine, nicotine and casein.
- CO2:- Determination of equivalent weight of organic acid.

SEMISTER V INORGANIC CHEMISTRY

COURSE OUTCOMES

- Co1:- To know the meaning of various terms involved in coordination chemistry.
- CO2:- To understand Varner's formulation of complexes and identify the type of vacancies.
- CO3:- To get the importance of electronic spectra of transition series element.
- CO4:- To solve numerical on crystal field theory.

SEMISTER V ORGANIC CHEMISTRY

- CO1:- Information regarding heterocyclic compounds their synthesis physical and chemical properties.
- CO2:- The knowledge of various drugs their synthesis and applications.
- CO3:- Knowledge about various pesticides and herbicides.
- CO4:- Acquaint about mode of action of drugs on various dieses.

SEMISTER V PHYSICAL CHEMISTRY

- CO1:- To understand concept of photochemistry.
- CO2:- To understand different terms Lambert -Beer's law, quantum yield, florescence, phosphorescence.
- CO3:- Derive expression for rotational spectra, vibrational spectra, and band spectra.

CO4:- Solve numerical on rational and vibrational spectroscopy.

SEMISTER V INORGANIC CHEMISTRY PRACTICAL

CO1:- To develop skill for inorganic complex salt preparation.

CO2:- To know idea for preparation of complex like tetra amine Cu(II) sulphate,hexamine nickel (II) chloride Prussian blue, sodium thiosulphate.

SEMISTER V PHYSICAL CHEMISTRY

CO1:- To develop skill for handling various sophisticated equipments.

CO2:- To perform titration and estimation by conductometry and potetiometrycally.

SEMISTER VI INORGANIC CHEMISTRY

COURSE OUTCOMES

CO1:- To get the knowledge of substitution of reaction SN1 and SN2 reaction.

CO2:- To understand various concept of Beer's law verification of Beer's law expression.

CO3: - To understand the chromatography types.

CO4:- To get information of organometalic compound.

CO5:- To know the role of sodium, potassium, calcium, magnesium, hemoglobin, myoglobin in biological system.

SEMISTER VI ORGANIC CHEMISTRY

CO1:- To understand different spectroscopic terms in electronic spectroscopy, chromospheres, oxochrome, bathochromic shift and hypsochromic shift.

CO2:- Application of electronic spectra for dying on saturated aldehydes and ketones aromatic compounds.

CO3:- To understand concept of NMR, Mass spectroscopy and their application in structure determination.

CO4:- Solve numerical on spectroscopy.

SEMISTER VI PHYSICAL CHEMISTRY

CO1:- To get information about redox potential determination types of different electrode.

CO2:- To determine PH solution by using hydrogen glass quinhydrone electrode.

CO3:- To understand different terms of nuclear chemistry, cell model, liquid drop model and meson theory.

CO4:- Knowledge about nuclear fussion and fussion Q value.

CO5:- Application of radio isotope in industries agriculture and medicine.

SEMISTER VI ORGANIC CHEMISTRY PRACTICAL

CO1:- To develop skill among the students to perform titration.

CO2:- To know the idea to perform various titration formaldehyde, ascorbic acid, phenol, anylene, and urea.

CO3:- To develop skill based practical like separation of mixture of dyes.

SEMISTER VI PHYSICAL CHEMISTRY PRACTICAL

CO1:- To give knowledge to students for handling various sophisticated equipments.

CO2:- To develop titration skill for potentiometry and pH metry.

CO3:- To verifies lamberts' beer's law by using colorimeter.